Novověk učinil v oblasti geometrie dva důležité kroky: odhalil existenci neeuklidovských geometrií a vytvořil analytickou geometrii.
Descart zavedením kartézské soustavy souřadnic objevuje metodu, jak analyticky, tj. prostřednictvím čísel a rovnic, zkoumat geometrické útvary. Díky tomuto objevu se v následujících staletích podaří vyřešit mnoho klasických geometrických problémů, např. otázka trisekce úhlu.
Stálé neúspěchy při logickém vyjadřování teorie rovnoběžek si vyžádaly ověřování základů euklidovské geometrie. Negováním pátého Euklidova postulátu o rovnoběžkách se u Lobačevského a Bolyaie objevila neeuklidovská geometrie jako matematicky zcela správná, ze svých axiomů odvoditelná a v okruhu své platnosti bezesporná teorie.