Geometrie ve Starověku

15. červen 2012 | 15.17 |

Geometrické útvary patří vedle čísel k nejstarším zkoumaným předmětům matematiky, jednoduchou představu o některých z nich měli lidé zřejmě již v paleolitu, starší době kamenné.V neolitu se pak různé útvary staly základem geometrické ornamentiky na více místech světa.Další rozvoj přišel s nástupem prvních států v Mezopotámii a Egyptě, kde se poznatky o útvarech využívaly v zeměměřičství a stavebnictví. Babylóňané již znali zvláštní případy Pythagorovy věty a egyptští geometři uměli počítat obsah trojúhelníka i kruhu, přičemž jejich odhad čísla pí byl asi 3,1605.K řadě poznatků se dospělo také ve starověké Indii a Číně.

Na vědeckou úroveň povznesli matematiku staří Řekové. Filozof, matematik a astronom Thalés z Milétu jako jeden z prvních zkoumal geometrické útvary pomocí dedukce a abstraktních úvah. Dokázal například změřit vzdálenost lodě na moři pomocí její relativní velikosti a předpověděl zatmění Slunce v roku 585 př.n.l.Další známou postavou se stal Pythagoras, který žil v 6. století př.n.l. Působil na jihu Itálie a založil tam školu, která byla přístupná mužům i ženám. Na škole měl neomezenou autoritu. Z této doby pochází pravděpodobně formální důkaz Pythagorovy věty, ačkoliv nejstarší zachovalý formální důkaz známe až od Eucleida.

Eukleida dnes považujeme za nejvýznamnějšího geometra starověku.Jeho kniha zvaná Základy (Στοιχεῖα) se stala na dlouhou dobu základní učebnicí geometrie. Eukleides v této knize zachytil abstraktní strukturu geometrických útvarů pomocí definic, axiomů a postulátů. Geometrie vycházející z těchto postulátů se nazývá Eukleidovská geometrie a v moderní formě se dnes učí na základních i středních školách.

V roce 212 př. n. l. změřil zakladatel geografie Eratosthenés z Kyrény poloměr Zeměkoule porovnáním velikosti stínů ve dvou městech ve stejném čase.Aristarchos ze Samu podobným způsobem pomocí trigonometrie změřil vzdálenost a velikost Měsíce.

Další geometrické konstrukce známé již ve starověku jsou platónská tělesa (Platón je popsal a uvažoval o jejich hlubším smyslu, zatímco Eukleides dokázal, že žádná další takto pravidelná tělesa již neexistují), Zénónovy paradoxy o nekonečném dělení úsečky nebo Archimédovy myšlenky o výpočtu objemu těles, předjímající pozdější integrální počet.Geometrie se týkají také tři slavné problémy, které starověká matematika zanechala nevyřešené: trisekce úhlu, zdvojení krychle a kvadratura kruhu.

Soubor:P. Oxy. I 29.jpg

Zpět na hlavní stranu blogu

Hodnocení

1 · 2 · 3 · 4 · 5
známka: 0.00 (0x)
známkování jako ve škole: 1 = nejlepší, 5 = nejhorší

Komentáře